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Abstract
Tick-borne diseases are on the rise. Lyme borreliosis is prevalent
throughout the Northern Hemisphere, and the same Ixodes tick
species transmitting the etiologic agents of this disease also serve
as vectors of pathogens causing human babesiosis, human granu-
locytic anaplasmosis, and tick-borne encephalitis. Recently, several
novel agents of rickettsial diseases have been described. Despite an
explosion of knowledge in the fields of tick biology, genetics, molecu-
lar biology, and immunology, transitional research leading to widely
applied public health measures to combat tick-borne diseases has not
been successful. Except for the vaccine against tick-borne encephali-
tis virus, and a brief campaign to reduce this disease in the former
Soviet Union through widespread application of DDT, success sto-
ries in the fight against tick-borne diseases are lacking. Both new
approaches to tick and pathogen control and novel ways of translat-
ing research findings into practical control measures are needed to
prevent tick-borne diseases in the twenty-first century.
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Lyme borreliosis:
disease caused by
infection with
Borrelia burgdorferi
sensu lato
spirochetes

Tick-borne
encephalitis:
disease caused by a
group of related
flaviviruses, resulting
in potentially fatal
encephalitis in focal
areas of Europe and
Asia

OspA: outer surface
protein A

INTRODUCTION

Knowledge in the field of tick-borne diseases
has increased rapidly owing to advances in
molecular biology, genetics, statistical mod-
eling, and environmental assessment tech-
niques. These advances have allowed for a
more in-depth understanding of the intricate
relationships between the physical environ-
ment, ticks, tick-borne pathogens, and verte-
brate hosts. In eastern North America, three
important pathogens causing human babesio-
sis (Babesia microti ), Lyme borreliosis (Borrelia
burgdorferi ), and human granulocytic anaplas-
mosis (Anaplasma phagocytophilum) are trans-
mitted by a single tick species: the blacklegged
tick, Ixodes scapularis. Molecular biology tools
have allowed us to understand how pathogens
such as B. burgdorferi and A. phagocytophilum
regulate the expression of key proteins in
tick salivary glands to facilitate their trans-
mission from the tick to the vertebrate host
(89, 99, 110). A genomic linkage map for
I. scapularis has established the groundwork
for a genomics project that may someday de-
scribe the entire genome of this important
tick vector (46, 116, 117). The combination
of Geographic Information System and Re-
mote Sensing technology and new statistical
modeling techniques has laid the groundwork
for a better understanding of associations be-
tween environmental factors and spatial pat-
terns of distribution and density of I. scapularis
and incidence of Lyme borreliosis (7, 22, 29,
40, 52).

Similar examples can be given from other
parts of the world. B. burgdorferi, which orig-
inally was considered the causative agent
of Lyme borreliosis across the Northern
Hemisphere, was later shown to be a mem-
ber of a species complex (B. burgdorferi sensu
lato) including both human pathogens (e.g.,
B. afzelii, B. burgdorferi, B. garinii ) and species
that rarely or never have been associated with
disease in humans (e.g., B. bissettii, B. sinica, B.
tanuki ) (6, 119). This finding had significant
implications because many older studies had
used pathogen-detection techniques not ade-

quate to distinguish between the subsequently
described pathogenic and nonpathogenic B.
burgdorferi sensu lato species. Rickettsia conorii,
the causative agent of Boutonneuse fever, was
previously thought to be the sole member of
the spotted fever group rickettsiae that cause
human illness in the Mediterranean region of
Europe and Africa. Advances in genetic tech-
niques, however, revealed a bewildering array
of new spotted fever group rickettsiae that can
cause human illness in this area; these include
R. africae, R. aeschlimanii, R. helvetica, R. massil-
iae, and R. slovaca, to name a few (92). In Eura-
sia, the complete genome of the tick-borne
encephalitis virus has been sequenced, lead-
ing to an improved understanding of variation
in the pathogenesis of this potentially deadly
flavivirus (39, 63). Progress in the control of
tick-borne diseases of livestock has been the
subject of several recent reviews (35, 78, 121)
and is not addressed here. The current review
focuses directly on progress in and impedi-
ments to the prevention of tick-borne diseases
of public health importance (Table 1) and dis-
cusses potential avenues for future interven-
tion strategies, including personal protection,
tick control, vaccination, and information de-
livery systems.

Unfortunately, the rapid progress in our
understanding of key points of attack on
tick-borne diseases (Figure 1) has trans-
lated poorly into successful prevention ef-
forts. Tick-borne diseases of public health
importance continue to increase at an alarm-
ing rate. In the United States, the num-
ber of cases of Lyme borreliosis reported to
the Centers for Disease Control and Preven-
tion (CDC) has steadily increased, with more
than 23,000 reported cases for the year 2002
(Figure 2), despite extensive research efforts
aimed at controlling this disease (44, 81). A
recombinant vaccine for use in humans, di-
rected against the outer surface protein A
(OspA) of the Lyme borreliosis spirochete B.
burgdorferi, was tested and shown to be ef-
fective (109). With the approval of this vac-
cine by the Food and Drug Administration
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Table 1 Selected tick-borne diseases of public health importance

Disease Causative agent(s) Primary vector(s)
Primary geographical

distribution
Viral
Colorado tick fever Coltivirus Dermacentor andersoni Western North America
Crimean-Congo hemorrhagic
fever

Nairovirus Hyalomma marginatum Africa, Asia, Europe

Kyasanur forest disease Flavivirus Haemaphysalis spinigera Indian subcontinent
Omsk hemorrhagic fever Flavivirus Dermacentor marginatus,

Dermacentor reticulatus, Ixodes
persulcatus

Asia

Tick-borne encephalitis Flavivirus Ixodes persulcatus, Ixodes ricinus Asia, Europe
Bacterial
African tick bite fever Rickettsia africae Amblyomma hebraeum,

Amblyomma variegatum
Africa, West Indies

Human granulocytic
anaplasmosis

Anaplasma
phagocytophilum

Ixodes ricinus, Ixodes pacificus,
Ixodes scapularis

Europe, North America

Human monocytic ehrlichiosis Ehrlichia chaffeensis Amblyomma americanum North America
Lyme borreliosis Borrelia burgdorferi

sensu lato
Ixodes persulcatus, Ixodes ricinus,
Ixodes scapularis, Ixodes pacificus

Asia, Europe, North America

Mediterranean spotted fever Rickettsia conorii Rhipicephalus sanguineus Africa, Asia, Europe
Q-fevera Coxiella burnetii Many species of different genera Africa, Asia, Australia, Europe,

North America
Rocky Mountain spotted fever Rickettsia rickettsii Amblyomma cajennense,

Dermacentor andersoni,
Dermacentor variabilis,
Rhipicephalus sanguineus

North, South, and Central
America

Tick-borne relapsing fever Borrelia spp. Ornithodoros spp. Africa, Asia, Europe, North
America

Tularemia Francisella tularensis Many species of different genera Asia, Europe, North America
Parasitic
Babesiosis Babesia divergens,

Babesia microti
Ixodes ricinus, Ixodes scapularis Europe, North America

aTransmission occurring via infected feces or coxal fluid rather than by the salivary transmission route.

(FDA) in 1999, hopes for combating this tick-
borne illness soared. The vaccine, however,
was quietly withdrawn from the market by
2002. In Europe, Lyme borreliosis continues
to be a growing public health problem. De-
spite country-to-country variation in report-
ing criteria, one estimate of Lyme borreliosis
cases per year in Europe placed the number at
more than 50,000 (73). Moreover, tick-borne
encephalitis appears to be an increasing prob-
lem in both Europe and Asia due partly to so-

cioeconomic changes resulting in increases in
risk behaviors for tick exposure (91) and partly
to our increasingly mobile society bringing
unvaccinated travelers into endemic regions
(57).

One common problem in controlling tick-
borne diseases is the difficulty in bridging
the gap between research and implementa-
tion of control methodology. In the United
States, mosquito control commonly is con-
ducted by professional local mosquito control
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Figure 1
Roadmap to control of ticks and tick-borne diseases.
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Figure 2
Cases of Lyme
borreliosis in the
United States
reported from
1982 to 2005 to the
Centers for
Disease Control
and Prevention.
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programs. As there is no equivalent organiza-
tional structure for tick control, the respon-
sibility for control of tick-borne diseases falls
squarely on the shoulders of individual physi-
cians and homeowners. Although these indi-
viduals can access a multitude of Web-based
sources that provide information of variable
quality regarding tick-borne diseases, there is
a lack of tick-borne disease decision support
systems that provide guidance regarding as-
sessment of local risk of acquisition of tick-
borne diseases for physicians or personal risk
for homeowners (Figure 1).

AVOIDING TICK BITES:
KNOWLEDGE OF NATURAL
SPATIOTEMPORAL RISK
PATTERNS FOR TICK
EXPOSURE

The first line of defense against tick bites is to
avoid high-risk habitats during peak tick activ-
ity periods. Below, we use three well-studied
tick vectors of Lyme borreliosis spirochetes to
explore the potential of and problems associ-
ated with avoidance of high-risk areas for tick
exposure. The primary vector to humans of
B. burgdorferi in far western North America,
the nymphal stage of the western blacklegged
tick, Ixodes pacificus, is an excellent example of
a tick for which knowledge of spatiotemporal
risk patterns for exposure can enable the pub-
lic to avoid tick bites. This is because exposure
of humans to I. pacificus nymphs is restricted
to an easily recognizable habitat (dense wood-
land with a ground cover dominated by leaf or
fir needle litter and lacking emergent vegeta-
tion) during a short time period (mid-April
to mid-June) (13, 25, 28, 113). In other cases,
avoidance of vector ticks can be far more com-
plicated. For example, a wide range of habi-
tats may present risk of exposure to vector
ticks during extended time periods. This is
exemplified by the common tick, Ixodes rici-
nus, in Europe, where humans are at risk for
exposure to both the nymphal and adult life
stages in a variety of habitat types from late
spring until early fall (30, 37, 38). Alterna-

tively, high-risk habitats may commonly occur
in the peridomestic environment. This is the
case in the northeastern United States, where
many residential properties include wooded
areas infested by I. scapularis (15, 67, 98, 105).
The high potential for peridomestic exposure
to I. scapularis likely is a key factor that ex-
plains why Lyme borreliosis is common in the
northeastern United States.

The importance of peridomestic versus
recreational exposure in tick-borne diseases is
influenced both by the spatial pattern of clus-
tering of the human population and the avail-
ability and actual use of public access lands.
The northeastern region of the United States
is an example of an area with a relatively scat-
tered suburban population and a high per-
centage of privately owned land where perido-
mestic exposure to I. scapularis probably is
more important than recreational exposure
(14, 22, 32). In contrast, recreational exposure
predominates in the Colorado Front Range,
where the human population is concentrated
just to the east of the Rocky Mountains but the
only human-biting tick (Dermacentor ander-
soni ) occurs primarily in montane areas to the
immediate west that are dominated by pub-
lic access lands and heavily utilized for recre-
ational purposes by the Front Range popula-
tion (9, 24).

Providing easily understandable and ob-
jective information on spatial patterns of risk
for exposure to vector ticks (see examples for
different spatial scales in Figures 3 and 4)
is a currently underutilized but cost-effective
method of increasing the public’s ability to
make informed decisions regarding how to
avoid high-risk areas and to inform the medi-
cal community of circumstances under which
a diagnosis of tick-borne disease should be
considered. The latter is not a trivial mat-
ter because persons afflicted with tick-borne
diseases can be unaware of having been bit-
ten by a tick (5, 44, 84). Thus, exposure to
habitats recognized as posing risk for con-
tact with vector ticks can be a key compo-
nent of a diagnosis of possible tick-borne
disease.
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Vector presence

Established Ixodes scapularis

Reported Ixodes scapularis

Established Ixodes pacificus

Reported Ixodes pacificus

Figure 3
County-based geographical distribution of I. pacificus and I. scapularis in the United States. Adapted from
Reference 18.

DEET: N,
N-diethyl-meta-
toluamide

AVOIDING TICK BITES:
PERSONAL PROTECTION
MEASURES

Numerous studies have examined behavioral
risk factors for exposure to ticks and tick-
borne pathogens (1, 60, 62, 74, 101). If ex-
posure to tick habitats cannot be avoided,
there are simple measures that can be taken to
minimize the risk of tick bites and pathogen
exposure. Wearing appropriate clothing (in-
cluding socks, long trousers tucked into the
socks, and a long-sleeved shirt tucked into the
trousers) mechanically decreases the risk that
a tick finds a feeding site after having con-
tacted a person. This is because the chances
of the tick either being brushed off the cloth-

ing or being detected and removed increases
with the distance it needs to travel in order
to find exposed skin. Repellents have been
demonstrated to effectively decrease the risk
of bites by a variety of tick species when ap-
plied to clothing or bare skin (11, 56, 59,
88, 95, 102). Although DEET (N, N-diethyl-
meta-toluamide) and permethrin-based prod-
ucts are reasonably safe to use, a substantial
segment of the population is still unwilling
to use them because they are perceived as
a potential source of toxicity (45). This co-
nundrum has occasioned a recent surge in re-
search activities focusing on the development
of repellents based on natural products, which
are thought to be more acceptable to people
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N

0 5 10

km

20

Figure 4
Predicted peak density of Ixodes pacificus nymphs in dense woodlands in Mendocino County, California.
Areas with risk of nymphal exposure classified as high (>10.50 nymphs per 100 m2) are shown in red,
moderate risk (6.41–10.50 per 100 m2) in orange, low risk (2.51–6.40 per 100 m2) in green, very low risk
(≤2.5 per 100 m2) in blue, and minimal or no risk (habitat classified as something other than dense
woodland) in white. Map also displays major highways. Inset map shows the location of Mendocino
County in California. Adapted from Reference 26.

unwilling to use currently available repel-
lents based on synthetic chemicals. A prod-
uct derived from lemon-scented eucalyptus oil
(Citriodiol, or p-menthane-3,8-diol) is cur-
rently on the market for use as a tick repellent
and has been shown to be somewhat effective
in the field (34); several other plant-derived
compounds including geranium oil, lavender
oil, and Alaska yellow cedar oil also show po-
tential as tick repellents (21, 50).

An antitick vaccine for cattle ticks directed
against midgut antigens already has been de-

veloped and applied with variable success un-
der field conditions (20, 83, 118). Although
an intriguing concept based on its potential
for suppressing multiple tick-borne diseases
caused by different pathogens transmitted by
a single tick species, the development of a sim-
ilar antitick vaccine for humans is far more
complicated. To serve its ultimate purpose,
such a vaccine will need to be efficient not only
in disrupting tick feeding but also in prevent-
ing pathogen transmission by an infected tick.
This may become a race between how rapidly
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Acaricides:
insecticides used to
kill ticks and other
Acarines

DDT:
dichloro-diphenyl-
trichloroethane

the antitick vaccine disrupts feeding versus
how quickly the tick starts to transmit the
pathogen. Antitick vaccines targeting midgut
antigens have potential for controlling tick-
borne pathogens exhibiting a significant time-
lag between tick attachment and pathogen
transmission, as seen for B. burgdorferi (79,
82). Pathogens likely to be transmitted shortly
after tick attachment, such as tick-borne en-
cephalitis virus, will require antitick vaccine
strategies that target tick attachment rather
than feeding; recently, an antitick cement sub-
stance has been employed against tick-borne
encephalitis virus (58). From a societal per-
spective, antitick vaccines may be more likely
to succeed commercially in Europe, where
the population already is accustomed to a safe
and efficacious vaccine against tick-borne en-
cephalitis virus, than in the more litigation-
prone North American arena, which has al-
ready experienced the commercial downfall
of a Lyme disease vaccine. The current fron-
tier in research on antitick vaccines targeting
key human-biting ticks is focused primarily on
identifying potential protein targets useful in
future vaccine development (49, 69, 72, 114,
120).

STRATEGIES FOR SUPPRESSION
OF HOST-SEEKING TICKS

Acaricides have been applied to vegetation
to decrease tick populations in recreational
and agricultural settings. The use of area-wide
acaricides to combat human tick-borne dis-
ease has had few well-established success sto-
ries. Perhaps the one demonstration of the
potential power of the employment of area-
wide acaricides to decrease the public health
impact of a tick-borne agent was in the for-
mer Soviet Union. From 1965 to 1971, the
incidence of tick-borne encephalitis in the
former Soviet Union was decreased by two-
thirds mainly because of the widespread use
of DDT (dichloro-diphenyl-trichloroethane)
to kill the principal vector tick (Ixodes persul-
catus) (54). With the worldwide abandonment
of DDT, this campaign ended and the inci-

dence of human infection with tick-borne en-
cephalitis virus in the former Soviet Union
gradually returned to preintervention levels
over the next two decades.

Public health efforts to demonstrate the
potential of area-wide acaricides to control I.
scapularis nymphs (the key vector stage) are
ongoing in Lyme disease–endemic regions of
the United States. Originally, older, second-
generation pesticides such as carbaryl, diazi-
non, and chlorpyrifos were employed to kill
I. scapularis. Over time, pest-control opera-
tors in the northeastern United States have
moved toward less-toxic but highly effective
synthetic pyrethroids (e.g., cyfluthrin, per-
methrin, and deltamethrin) for controlling I.
scapularis in the peridomestic environment.
Interestingly, a single well-timed application
of deltamethrin applied at the forest-lawn in-
terface of residential properties can kill 95%
of host-seeking I. scapularis nymphs (97). Such
an application would, presumably, dramati-
cally reduce the risk of acquiring infection
with the agents causing Lyme borreliosis,
human granulocytic anaplasmosis, or human
babesiosis. But yet, most residents in ar-
eas highly endemic for these I. scapularis–
transmitted pathogens decline to use area-
wide acaricides on their properties owing to
perceived concerns regarding the products ca-
pacity to cause mammalian toxicity and envi-
ronmental damage. In fact, less than 25% of
residents in highly Lyme borreliosis–endemic
regions of Connecticut, New Jersey, New
York, and Massachusetts reported spraying
their properties to control ticks (81). This re-
ality has forced public health entomologists
to look broadly for alternative interventions
to reduce the risk of tick-borne diseases. One
of the first alternative avenues pursued was
vegetation management.

Vegetation management has been part of
tick control for centuries. Native Americans
were reported to conduct controlled burns
in part to reduce tick populations; pasture
rotations have long been part of tick con-
trol in livestock management. Different types
of vegetation management (brush removal,
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mowing, and removal of overstory vegeta-
tion) were explored in the late 1960s in the
southeastern United States to control the ex-
ceptionally abundant and vigorous lone star
tick, Amblyomma americanum, which then was
known as a vector of the tularemia agent Fran-
cisella tularensis and later has been implicated
in the transmission of the causative agent of
human monocytic ehrlichiosis (Ehrlichia chaf-
feensis) (31, 41, 47, 75). The emergence of
Lyme borreliosis reinvigorated the science
of vegetation management for tick control.
The principal vector of B. burgdorferi in the
eastern United States, I. scapularis, is found
mainly in forest habitats associated with leaf
litter. Removal of leaf litter from the for-
est floor exposes these ticks to desiccation
and dramatically reduces the overall popula-
tion of host-seeking ticks (96). Brush removal
and burning also reduces I. scapularis popu-
lations but the effect is short-lived (64, 108,
124). More long-lasting landscape manage-
ment strategies might include placing a border
between naturally tick-infested forested habi-
tats and adjacent lawns on residential prop-
erties (67); Alaska yellow cedar sawdust may
be an appropriate material for such borders
owing to its repellent properties (80).

Least-toxic approaches for area-wide tick
control include chemicals such as soaps
and desiccants (76). Another environmentally
friendly approach to tick control involves the
use of biological agents (e.g., parasitoid wasps,
nematodes, bacterial and fungal agents, and
vertebrate and invertebrate predators of ticks)
to kill ticks; this was the subject of a previous
extensive review (93). Recently, much work
has focused on developing fungal agents that
can be sprayed at spore concentrations that
kill I. scapularis (3, 48). The prime candidate
for a commercially available fungal agent to
kill I. scapularis is Metarhizium anisopliae. This
fungus, however, is still not widely available
for tick control in high volume with sufficient
viable spore concentrations to kill ticks for
Lyme borreliosis prevention.

To minimize the amount of acaricides
needed to control ticks, researchers have de-

veloped host-targeted approaches to tick con-
trol. Compared with area-wide broadcasts of
acaricides to vegetation, only minute amounts
of acaricides are used in these host-targeted
efforts when calculated on a per-acre basis.
Perhaps the largest effort to employ host-
targeted approaches to prevent tick-borne
diseases in humans began when the USDA
group at Kerrville, Texas, began to adapt
bait station technology originally developed
for control of the Southern cattle tick Rhipi-
cephalus (Boophilus) microplus for use against
tick vectors of human pathogens. First, they
tested a device that lured white-tailed deer
into corn-feeding stations that contained four
paint rollers laden with acaricide. To get the
corn, these deer had to rub their heads against
the paint rollers and self-apply a test acari-
cide (amitraz). This device was called the 4-
poster device. Initial trials against the lone
star tick, A. americanum, were highly success-
ful (86, 87) and the device was subsequently
tested against I. scapularis (10, 103). Because
the devices are mainly targeted at the adult
stage of I. scapularis, there is a delayed effect
before the principal pathogen vector stage,
the nymph, is reduced. But, in initial trials in
Maryland using both amitraz (10) and 10%
permethrin (103), I. scapularis populations
were dramatically reduced over a wide area.
A field test of this technology in several states
where Lyme borreliosis is hyperendemic
has been conducted and is currently being
analyzed.

Potential regulatory concerns about bring-
ing deer to feeding stations and the high cost
of labor required to maintain the bait and aca-
ricide on the 4-poster devices must be ad-
dressed before this technology comes into
widespread use. Attempts to control ticks by
limiting deer populations through fencing or
hunting have had mixed success. On an is-
land off the cost of Maine, researchers re-
cently demonstrated that eradication of the
deer herd led to a dramatic reduction in pop-
ulations of I. scapularis (90). There is, how-
ever, still a need to establish a cutoff for
deer populations below which we are certain
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tick populations and Lyme disease spirochete
transmission risk will be reduced.

Targeting the rodent hosts that support
populations of the immature stages of ticks or
serve as key pathogen reservoirs has also re-
ceived research attention. An early study from
Virginia (104) used a bait box that dispensed
either 5% carbaryl or 1% diazinon and tar-
geted a principal host, the meadow vole, Mi-
crotus pennsylvanicus, of the immature stages of
the American dog tick, Dermacentor variabilis,
which is a key vector of both the tularemia
agent F. tularensis and the Rocky Mountain
spotted fever agent Rickettsia rickettsii in the
eastern United States (8, 51). Subsequently,
it was observed that the white-footed mouse,
Peromyscus leucopus, a principal host for imma-
ture I. scapularis, would take cotton from ex-
perimental nesting boxes on the ground back
to their own nests. Researchers treated these
cotton balls with permethrin, thereby treat-
ing both the mouse taking the cotton balls
and all its nest mates. Cardboard tubes con-
taining permethrin-treated cotton balls were
field tested in Massachusetts and dramatically
reduced both the number of I. scapularis lar-
vae and nymphs on white-footed mice and
the density of infected host-seeking nymphs
(17, 65, 66). Unfortunately, field studies con-
ducted in New York and Connecticut did
not show similar dramatic efficacy (16, 106,
107). One reason for variation from site to
site may be the diversity of vertebrates that
serve as hosts for I. scapularis immatures or as
reservoirs of B. burgdorferi. In some locations,
chipmunks, shrews, or even birds may be sig-
nificant contributors as tick hosts and key
players in enzootic transmission of B. burgdor-
feri. New designs for bait boxes that contain
wicks that deliver fipronil, a highly effective
acaricide that renders treated animals free of
ticks for up to 7 weeks, have been tested in
coastal Connecticut and show some promise
for reducing the number of host-seeking I.
scapularis infected with B. burgdorferi (23). The
utility of these fipronil-treated bait boxes in
diverse ecological settings needs to be estab-

lished, and the boxes must be made resistant
to vandalism by squirrels.

STRATEGIES FOR SUPPRESSION
OF PATHOGEN-INFECTED
TICKS

Host-targeted approaches that specifically
kill vector-borne pathogens within vertebrate
reservoirs are an alternative to the above-
mentioned host-targeted approach in which
an acaricide is used to kill ticks attached
to a reservoir host. In one pilot study in
Connecticut, white-footed mice were cap-
tured and inoculated with a recombinant vac-
cine directed against the OspA of B. burgdor-
feri (115). An attempt to vaccinate all the mice
caught within a woodlot resulted in a 16%
decrease in the B. burgdorferi infection rate
of host-seeking I. scapularis nymphs the fol-
lowing year (115). A more practical approach
to disseminating a wildlife vaccine against the
OspA protein of B. burgdorferi would utilize
an oral vaccination approach. Oral OspA vac-
cines based on recombinant vaccinia virus
(94) or Escherichia coli (36) are highly effec-
tive when tested on rodents in the laboratory.
Field trials of candidate rodent-targeted OspA
vaccines are needed to explore the promise of
this technology. An additional pathogen-host-
targeted approach to prevention of tick-borne
diseases would be to place doxycycline into
an oral bait formulation. This would have the
added benefit of attacking not only B. burgdor-
feri but also other tick-borne pathogens such
as A. phagocytophilum. The ability of doxy-
cycline prophylaxis to block transmission of
B. burgdorferi to rodents in the lab has been
demonstrated (125). However, the environ-
mental impact of using doxycycline-treated
baits for the prevention of tick-borne dis-
eases, especially the risk of emergence of
doxycycline-resistant bacteria through large-
scale introduction of this antibiotic into popu-
lations of rodents, needs to be assessed before
this technology is acceptable for widespread
use.
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AVOIDING DISEASE
FOLLOWING A BITE BY
AN INFECTED TICK

There are at least three general approaches
to avoiding disease following a bite by an in-
fected tick. First, clinical disease can be sup-
pressed by a previously administered vaccine.
This is currently only applicable to tick-borne
encephalitis for which there is a commercially
successful vaccine that has been used widely in
Europe for several decades (2, 4, 12). In con-
trast, the Lyme borreliosis vaccine for use in
humans (LYMErixTM) that was introduced in
North America in 1998 was retracted from the
market in 2002 despite being relatively safe
and efficacious (61, 85, 109, 123). Primary fac-
tors leading to low sales and, ultimately, the
downfall of this vaccine included the need for
frequent boosters, a high vaccination cost, ex-
clusion of children from vaccination, fear of
vaccine-induced musculoskeletal symptoms,
and litigation related to the vaccine (42, 44).
Although there is progress toward new and
improved Lyme borreliosis vaccines (53, 122),
the commercial failure of LYMErix likely will
slow the development process for replacement
vaccines. Second, daily tick checks following
exposure to high-risk habitats and subsequent
prompt removal of attached ticks may pre-
vent pathogen transmission by infected ticks
for some tick-borne diseases. For example, it
is well established that B. burgdorferi is not
commonly transmitted until >24 h after at-
tachment of infected I. pacificus or I. scapu-
laris ticks (77, 79, 82). Third, in the case of
Lyme borreliosis, administering an appropri-
ate antibiotic shortly after a tick bite decreases
the risk of developing clinical symptoms (55,
70). A similar approach may prove effective
for other tick-borne bacterial pathogens.

COST-EFFECTIVENESS OF
PREVENTION OF TICK-BORNE
DISEASES

A cost-benefit analysis of vaccination against
tick-borne encephalitis virus among French

troops on tour in the Balkans showed a
negative economic benefit; the cost of a
vaccination program including all military
personnel ( 10.05 million) far exceeded the
economic benefit ( 4.37 million) of prevent-
ing an estimated 121 tick-borne encephalitis
cases through the vaccination program (19).
In the United States, a study of test-treatment
strategies for patients suspected of having
Lyme borreliosis showed that neither test-
ing nor antibiotic treatment is cost-effective
if the pretest probability of Lyme borrelio-
sis is low (71). Empirical antibiotic therapy
was recommended if the pretest probability is
high. Evaluations of cost-effectiveness of vac-
cinating against Lyme borreliosis, conducted
while a vaccine was still commercially avail-
able, indicated that few communities had dis-
ease probability rates (>0.005) great enough
for mass-vaccination to be economically ben-
eficial and that vaccination should be based on
estimates of individual risk, with vaccination
recommended for persons whose probabil-
ity of contracting Lyme disease is ≥0.01 (68,
100). Although society may seek to balance
the cost of Lyme borreliosis (126) against the
potential benefit of control technologies (43,
44), homeowners must make these decisions
themselves each year. It is incumbent upon
public health authorities to provide timely in-
formation about the risk of tick-borne dis-
eases and to guide homeowners toward re-
sources outlining the latest developments in
tick-borne disease control methodologies.

TRANSFER OF INFORMATION
TO THE MEDICAL
COMMUNITY AND THE
GENERAL PUBLIC

Transfer of research-derived information in
easily understandable formats to the pub-
lic and the medical community, e.g., in the
format of decision support systems for tick-
borne disease risk assessment, is an important
but inadequately studied aspect of preven-
tion of tick-borne diseases. The impor-
tance of reliable and user-friendly Web-based
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information resources cannot be overstated
in light of the constantly increasing usage of
the Internet as the first option for retriev-
ing information on any given topic. Long-
established Web-based information resources
for Lyme borreliosis providing a classical
one-way flow of information from source to
user are now complemented by novel Web-
based resources that provide a more inter-
active two-way flow of information between
the source and the end user. This is exempli-
fied by the University of Rhode Island (URI)
Web-based Tick Encounter Resource Cen-
ter (http://www.tickencounter.org/), which
not only provides a variety of objective in-
formation on Lyme borreliosis for Rhode Is-
landers and others but also aims to serve as
a conduit for two-way information flow be-

tween URI researchers, the local community,
and beyond that will allow for continual im-
provement of the provided Web-based knowl-
edge resource.

Web-based information resources also are
well suited to incorporate risk maps for tick-
borne diseases. For example, risk maps for
tick-borne encephalitis in Europe are used as a
decision support tool for the medical commu-
nity and the public when determining the ben-
efit of receiving vaccination against tick-borne
encephalitis virus (111, 112). As illustrated in
Figure 5 for Lyme borreliosis in California,
risk maps also can combine independently de-
rived information on fine-scale incidences of
tick-borne disease and acarological risk of tick
exposure (27). This approach not only con-
firmed that north coastal California and the

N

0 100

km

200

Figure 5
California (left) counties and (right) zip codes with Lyme borreliosis incidence exceeding 1 case (light
gray) or 5 cases ( gray) per 100,000 persons—during the years 1993–2005, in relation to the distribution
of areas with high projected acarological risk of exposure to Ixodes pacificus nymphs (shaded red ). Adapted
from Reference 27.
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northern foothills of the Sierra Nevada moun-
tain range are the primary Lyme borreliosis
foci in the state (33) but also revealed the pres-
ence of small, isolated high-risk “islands” in
the southern part of the state where the oc-
currence of locally acquired Lyme borreliosis
has been contentious.

PREVENTION OF TICK-BORNE
DISEASE IN THE
TWENTY-FIRST CENTURY

Decisions concerning the prevention of many
vector-borne diseases (e.g., malaria, try-
panosomiasis, dengue, West Nile virus dis-
ease) are made at the national, regional, lo-
cal, or mosquito control district level. When
dealing with tick-borne diseases, such deci-
sions are made at the family or individual level.
Mosquito control is a community respon-
sibility; tick control is an individual home-
owner responsibility. This may explain why
currently in the United States, several thou-
sand people are dedicated to mosquito con-
trol, whereas only a few dozen are dedicated
to public health–related tick control. Never-
theless, the research community has been in-
genious in devising a plethora of novel meth-

ods for tick and tick-borne disease control in-
cluding vaccines, area-wide acaricide applica-
tion, least-toxic pesticides, host-targeted de-
vices for acaricide application, host-targeted
vaccines, biological control methods, and per-
sonal protection strategies. But, except per-
haps for the focal use of vaccine against tick-
borne encephalitis virus in Europe and eastern
Russia, methods for the prevention of tick-
borne diseases are not widely employed, even
in the face of an increasing surge of Lyme
borreliosis, human granulocytic anaplasmo-
sis, and human babesiosis. We must bring aca-
demic research on tick-borne diseases into the
real world and make effective methods for the
prevention of tick-borne diseases cheap, safe,
and easy for the homeowner to apply. We must
also ensure ready access (e.g., through Web-
based decision support systems for tick-borne
diseases) to information empowering individ-
uals to (a) make rational and informed deci-
sions regarding their personal risk of exposure
to tick-borne pathogens and (b) take appro-
priate actions to mitigate risk of tick bites
and pathogen exposure. Those are our chal-
lenges at the beginning of the twenty-first
century in the field of prevention of tick-borne
diseases.

SUMMARY POINTS

1. Tick-borne diseases are on the rise.

2. Despite an explosion of knowledge in the fields of biology and genetics of ticks and
tick-borne pathogens, measures to combat tick-borne diseases are lagging.

3. Past successes include the tick-borne encephalitis virus vaccine and widespread appli-
cation of DDT in the former Soviet Union.

4. Promising prevention approaches have emerged in the arena of host-targeted tick
control and oral vaccination of reservoir hosts.

5. The current frontier in anti-tick vaccines is focused on identifying target antigens for
future vaccine development.

6. Progress toward new and improved Lyme borreliosis vaccines has been slowed by the
commercial failure of LYMErix.

7. Reluctance by the public to use synthetic repellents and acaricides has led to the
exploration of natural products for this use.
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8. Decision support systems for the assessment of tick-borne disease risk are needed
to help the medical community and general public make choices concerning the
prevention of tick-borne diseases.

FUTURE ISSUES

1. There is a need for development of integrated pest management approaches high-
lighting least-toxic methods for tick control and prevention of tick-borne diseases.

2. Academic research on tick-borne diseases must be brought into the real world and
effective methods for the prevention of tick-borne diseases must be made cheap, safe,
and easy for the homeowner to apply.

3. We need to ensure ready access to objective information empowering the individuals
de facto responsible for control of ticks and tick-borne diseases to make rational and
informed decisions regarding their personal risk of exposure to tick-borne pathogens
and to take appropriate actions to mitigate risk of tick bites and pathogen exposure.

DISCLOSURE STATEMENT
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