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ABSTRACT 19 

Lyme disease is the most prevalent vector-borne disease in the United States. Ixodes scapularis, 20 

commonly referred to as the blacklegged tick, is the primary vector of Lyme disease spirochetes, 21 

Borrelia burgdorferi sensu lato (s.l.), in the eastern United States. Connecticut has pervasive 22 

populations of I. scapularis and remains a hotspot for Lyme disease. A primary aim of this 23 

study was to determine if passively collected data on human-biting I. scapularis ticks in 24 

Connecticut could serve as a useful proxy for Lyme disease incidence based on the cases 25 

reported by the Connecticut Department of Public Health (CDPH). Data for human-biting I. 26 

scapularis ticks submitted to the Tick Testing Laboratory at the Connecticut Agricultural 27 

Experiment Station (CAES-TTL), and tested for infection with B. burgdorferi s.l., were used to 28 

estimate the rate of submitted nymphs, nymphal infection prevalence, and the rate of submitted 29 

infected nymphs. We assessed spatiotemporal patterns in tick-based measures and Lyme disease 30 

incidence with generalized linear and spatial models. In conjunction with land cover and 31 

household income data, we used generalized linear mixed effects models to examine the 32 

association between tick-based risk estimates and Lyme disease incidence. Between 2007 and 33 

2017, the CAES-TTL received 26,116 I. scapularis tick submissions and the CDPH reported 34 

23,423 Lyme disease cases. The rate of submitted nymphs, nymphal infection prevalence, the 35 

rate of submitted infected nymphs, and Lyme disease incidence all decreased over time during 36 

this eleven-year period. The rate of submitted nymphs, the rate of submitted infected nymphs, 37 

and Lyme disease incidence were spatially correlated, but nymphal infection prevalence was 38 

not. Using a mixed modeling approach to predict Lyme disease incidence and account for 39 

spatiotemporal structuring of the data, we found the best fitting tested model included a strong, 40 

positive association with the rate of submitted infected nymphs and a negative association with 41 
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the percent of developed land for each county. We show that within counties, submissions of B. 42 

burgdorferi s.l. infected nymphs were strongly and positively associated with inter-annual 43 

variation in reported Lyme disease cases. Tick-based passive surveillance programs may be 44 

useful in providing independent measures of entomological risk, particularly in settings where 45 

Lyme disease case reporting practices change substantially over time. 46 

 47 

Keywords: Ixodes scapularis, Borrelia burgdorferi sensu lato, Lyme disease, passive 48 

surveillance, Connecticut 49 

  50 
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INTRODUCTION 51 

First described in 1977 following the investigation of a cluster of children with arthritis-like 52 

symptoms in Lyme, Connecticut (Steere et al., 1977), Lyme disease is now the most prevalent 53 

vector-borne disease in the United States, with an estimated 330,000 human cases occurring 54 

annually (Hinckley et al., 2014; Nelson et al., 2015; Schwartz et al., 2017). Ixodes scapularis, 55 

commonly referred to as the blacklegged tick or deer tick, is the primary vector of Lyme disease 56 

spirochetes, Borrelia burgdorferi sensu lato (s.l.), and several other human disease-causing 57 

pathogens in the Eastern United States (Burgdorfer et al., 1982; Eisen and Eisen, 2018). 58 

Connecticut has pervasive populations of I. scapularis (Dennis et al., 1998; Eisen et al., 2016), 59 

and remains a high-incidence state for Lyme disease (Schwartz et al. 2017). In 2015, Connecticut 60 

was among the 14 states from which 95% of Lyme disease cases in the United States were 61 

reported, had the 5th highest number of reported cases (n=1,873), and concurrently has the 5th 62 

highest incidence (52.2 per 100,000 population) (Centers for Disease Control and Prevention, 63 

2017). 64 

Surveillance for Lyme disease cases can be complemented by conducting active or 65 

passive tick surveys to better understand spatial and temporal risk of human exposure to tick 66 

bites. Active tick surveillance is the collection of ticks in the environment, for example through 67 

drag or flag sampling or examination of captured rodents. Entomological risk measures 68 

generated through active tick surveillance include the density of host-seeking infected nymphal 69 

ticks (DIN), calculated as the product of the density of nymphs (DON) and nymphal infection 70 

prevalence (NIP) which is the proportion of nymphs that test positive for B. burgdorferi s.l. (or 71 

another pathogen of interest). DIN is generally considered the best predictor of human Lyme 72 

disease risk (Mather et al., 1996; Diuk-Wasser et al., 2012; Pepin et al., 2012).  73 
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Active tick surveillance is labor intensive, which limits the geographic coverage of 74 

sampling locations. Moreover, tick abundance and density estimated through active tick 75 

surveillance (i.e., tick dragging) is highly variable and unreliable if not based on repeated 76 

measures (Clow et al., 2018). Additionally, human behavior (such as how humans use the 77 

landscape, to what extent they take protective measures, and for how long ticks remain attached 78 

before detection and removal) mediates the relationship between DIN and Lyme disease 79 

acquisition (Rossi et al., 2015; Eisen and Eisen, 2016). Several studies have found a positive 80 

relationship between DIN and Lyme disease cases (Mather et al., 1996; Nicholson and Mather, 81 

1996; Stafford et al., 1998; Pepin et al., 2012). However, in some cases the relationship was weak 82 

or equivocal (Nicholson and Mather, 1996; Pepin et al., 2012; Ripoche et al., 2018), and in other 83 

studies no association was reported (Connally et al., 2006; Prusinski et al., 2014). These 84 

discrepant findings likely reflect differences across studies in human behavior or the scale of the 85 

analysis, with the strength of the relationship between DIN and Lyme disease weakening with 86 

increased spatial resolution (Connally et al., 2006; Pepin et al., 2012). 87 

Compared with active surveillance, there has been less focus on understanding how well 88 

tick measures obtained through passive surveillance estimate reported Lyme disease cases. Passive 89 

surveillance can include assessing tick abundance or infection rates in ticks submitted from the 90 

public, physicians or veterinarians. Testing for pathogens in ticks engorged or partially engorged 91 

with human blood is offered at no cost to residents of Connecticut by the Tick Testing Laboratory 92 

at the Connecticut Agricultural Experiment Station (CAES-TTL). This testing service promotes 93 

voluntary tick submissions from Connecticut residents. Secondarily, it provides passive 94 

surveillance data to estimate the frequency of human exposure to ticks, as well as tick infection 95 

prevalence, on a broader scale than more focal active tick surveillance (Xu et al., 2016). 96 
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Compared to active surveillance of ticks in the environment, passive surveillance is economical, 97 

more epidemiologically relevant, covers a larger geographical area and may better detect tick 98 

populations at low densities. Drawbacks of passive surveillance include (1) limitations of a 99 

presence-only dataset, (2) potential for waning interest over time (participation fatigue) or 100 

variable knowledge across communities of the surveillance program, (3) spatial bias to more 101 

versus less populated areas, and (4) difficulty in detecting immature tick life stages on humans 102 

and pets (Koffi et al., 2012; Nelder et al., 2014; Soucy et al., 2018). Nevertheless, passive tick 103 

surveillance has been used to better understand the epidemiology of tick-borne diseases and 104 

assess the risk of human infection (Stromdahl et al., 2001; Ogden et al., 2006; Ogden et al., 105 

2010; Koffi et al., 2012; Nelder et al., 2014; Rossi et al., 2015; Gasmi et al., 2016; Xu et al., 106 

2016; Ripoche et al., 2018). Previous studies have found associations between passive tick 107 

surveillance metrics and Lyme disease cases, and provided insights into spatiotemporal trends of 108 

actual human exposure to bites by infected ticks (Johnson et al., 2004; Rand et al., 2007; Waller 109 

et al., 2007; Rossi et al., 2015; Shelton et al., 2015; Ripoche et al., 2018; Gasmi et al., 2019; 110 

Jordan and Egizi, 2019).  111 

Here we use passive surveillance data, based on I. scapularis tick submissions to the 112 

CAES-TTL and tick testing results for B. burgdorferi s.l., and reported Lyme disease cases to 113 

describe spatiotemporal patterns of disease risk at two spatial scales (town and county) in 114 

Connecticut between 2007 and 2017. Over this eleven-year period, we aim to describe tick-based 115 

risk measures and Lyme disease incidence and examine the relationship between passive tick 116 

surveillance-derived tick-based risk metrics and Lyme disease incidence.  117 

 118 

MATERIALS AND METHODS 119 
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Study area. Connecticut is the southernmost state in New England, a small state of about 14,356 120 

km2 and a population of 3.6 million people (United States Census Bureau, 2017). The state has 121 

eight counties and 169 towns. Overall, approximately 58% of the state is forested and even in the 122 

most urban counties forest cover is roughly 50% (Wharton et al., 2004; The Community Health 123 

Foundation, 2007; Butler et al., 2017). 124 

Lyme disease data. Lyme disease case data for each town and year were provided by the 125 

Connecticut Department of Public Health (CDPH) Epidemiology and Emerging Infections 126 

Program. Notably, Lyme disease surveillance methods in Connecticut have changed over time. 127 

Mandatory laboratory reporting was instated in 1998 to monitor the efficacy of the Lyme disease 128 

vaccine, but this requirement ended when the vaccine was withdrawn in 2002 and was not 129 

reinstated until 2007 (Ertel et al., 2012). 130 

Between 1996 and 2007, 16% more Lyme disease cases were reported by physicians in 131 

years when laboratory reporting was mandated (Ertel et al., 2012). Therefore it is pragmatic to 132 

restrict the epidemiological data to 2007-2017 when both laboratory and physician surveillance 133 

were conducted. Physician reported cases tend to include early onset manifestations (e.g., 134 

erythema migrans), whereas laboratory reported cases tend to comprise later manifestations such 135 

as those involving the musculoskeletal, neurological, or cardiovascular systems (Ertel et al., 136 

2012). We therefore use the combined surveillance metric, which we call total cases (confirmed 137 

and probable physician and laboratory-based surveillance cases) for analysis as it provides a 138 

more comprehensive estimate of Lyme disease cases (Ertel et al., 2012). We used the US Census 139 

estimates from 2000 to calculate incidence per 100,000 population for each year from 2007 to 140 

2009 and the 2010 US Census estimates to calculate incidence per 100,00 population for each 141 

year from 2000 to 2017 (United States Census Bureau, 2017). 142 
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Tick-based data. The CAES-TTL started testing ticks for evidence of infection with B. 143 

burgdorferi s.l. in 1996. Ticks are submitted by residents, health departments, and physicians’ 144 

offices. All submitted ticks are examined under a dissecting microscope and identified with 145 

standard morphological keys and taxonomic references (Keirans and Litwak, 1989; Durden and 146 

Keirans, 1996). Engorged or partially engorged female and nymphal I. scapularis ticks (showing 147 

evidence of at least some ingested blood) are screened for infection with B. burgdorferi s.l. as 148 

described below. 149 

 Two methodologies have been used for screening of I. scapularis ticks for evidence 150 

of infection with B. burgdorferi s.l. from 1996 to 2017. From 1996 to 2014, polymerase chain 151 

reaction (PCR) amplification combined with Southern blot hybridization was used. Briefly, ticks 152 

were homogenized, genomic DNA extracted, and a portion of the OspA gene was amplified 153 

(Persing et al., 1990). PCR-amplified products were then analyzed by gel electrophoresis, 154 

followed by Southern blot hybridization (Persing et al., 1990). In 2014, Southern blot 155 

hybridization was removed from the methodology due to the potential health and safety hazards 156 

associated with using 32P-labled probes. Since 2014, screening of engorged or partially engorged 157 

ticks was conducted by extracting genomic DNA using the DNeasy Blood and Tissue Kit 158 

(Qiagen, Valencia, CA, USA), or DNA-zol BD (Molecular Research Center, Cincinnati, OH, 159 

USA) according to the manufacturers’ recommendations with some modifications (Molaei et al., 160 

2006), followed by PCR amplification of the flagellin (Barbour et al., 1996), 16S rRNA 161 

(Gazumyan et al., 1994), and OspA (Persing et al., 1990) genes. A more detailed description of 162 

these methods is provided elsewhere (Williams et al., 2018). Comparison between the two 163 

methods, PCR-Southern blot hybridization and PCR using three diagnostic genes on a subset of 164 

DNA extracts from ticks with known and unknown infection status with B. burgdorferi s.l. 165 
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produced comparable results (data not shown). Although this assay is not specific to B. 166 

burgdorferi sensu stricto (s.s.), a human-pathogenic member of the bacterial genospecies 167 

complex B. burgdorferi s.l., it is agreed upon that B. burgdorferi s.s. accounts for the vast 168 

majority of Lyme disease infections in Connecticut and throughout North America (Waddell et 169 

al., 2016). Moreover, a recent study capable of distinguishing B. burgdorferi s.s. from other B. 170 

burgdorferi s.l. spirochetes found all infected I. scapularis nymphs from Connecticut, and nearly 171 

all from neighboring New York, to represent B. burgdorferi s.s. (Feldman et al., 2015).  172 

 On the submission form to the CAES-TTL, the person submitting the tick must enter 173 

their, or their patient's town of residence and provide information on the likely town the tick was 174 

acquired if it is known to be different from the town of residence. Ticks acquired outside of 175 

Connecticut or from a Connecticut county other than the county of the submitter's residence were 176 

excluded from the analysis. These actions served to minimize error introduced by travel-related 177 

tick exposures, which can be problematic in a passive surveillance program based on human tick 178 

bites (Xu et al., 2018). We further narrowed the dataset to submissions of female and nymphal 179 

ticks, excluding males and larvae. Because nymphs are considered the primary vectors of Lyme 180 

disease spirochetes to humans in the Northeast (Falco et al., 1999), we estimated the rate of 181 

submitted nymphs per 100,000 population, NIP, and the rate of submitted infected nymphs per 182 

100,000 population at two spatial scales (town and county) for each year from 2007 to 2017. To 183 

calculate the rate of submitted nymphs per 100,000 population, we used the 2000 and 2010 184 

United States Census estimates (United States Census Bureau, 2017). NIP was calculated as the 185 

number of positive nymphs divided by the total number of tested nymphs. The rate of submitted 186 

infected nymphs recovered from humans was calculated as the rate of submitted nymphs 187 

multiplied by the NIP. 188 



Page 10 of 45

Acc
ep

te
d 

M
an

us
cr

ip
t

10  

Covariates. To assess the influence of selected underlying conditions on the variability in the 189 

(infected) rate of submitted nymphs and Lyme disease incidence in Connecticut, we measured 190 

median household income and extent of developed land cover. We speculated that these 191 

variables influence tick submission to the CAES-TTL and/or Lyme disease incidence. Median 192 

household income may underlie access to or knowledge of services for tick testing or Lyme 193 

disease diagnosis and the degree of developed land cover may explain some of the variability in 194 

human-tick encounters (Cortinas and Spomer, 2014). To estimate town and county level median 195 

household income, we used United States Census (2012-2016) American Community Survey 5-196 

year estimates of median household income (United States Census Bureau, 2017). To determine 197 

the extent of developed land cover for each town and county, we used the 2011 National Land 198 

Cover Database (NLCD) (Homer et al., 2015). We used the land cover classes considered 199 

developed (developed open space, developed low intensity, developed medium intensity, and 200 

developed high intensity) to create a binary raster grid at 30 meter spatial resolution of developed 201 

and undeveloped land. Using this binary raster grid we then determined the percentage of 202 

developed land for each town and county using the “zonal statistics as table” tool from the spatial 203 

analysis toolbox in ArcGIS 10.1 (ESRI, 2011). We investigated the relationship of these two 204 

covariates to tick-based risk measures and Lyme disease incidence through correlation analyses. 205 

Data analysis. Passive surveillance data from the CAES-TTL is available since 1996 and we 206 

used the full record (1996-2017) to describe submission patterns including seasonality of 207 

submissions. To compare tick-based risk measures to Lyme disease incidence, we restricted the 208 

analyses to the years 2007-2017. To ensure that this restricted dataset was reflective of the entire 209 

dataset, we performed a Spearman’s rank correlation test. 210 

 211 
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 To assess temporal patterns in tick-based risk metrics and Lyme disease incidence, we 212 

summarized the data across the state for annual estimates. To test for temporal differences in the rate of 213 

submitted nymphs, NIP, the rate of submitted infected nymphs, and Lyme disease incidence, we 214 

used generalized linear models (family = Poisson; link = log) with year structured as an ordinal 215 

integer. To test for spatial patterns, we summarized the data across all years for each town 216 

(n=169) and calculated the Global Moran’s I in ArcGIS 10.1. For robust estimation of Global 217 

Moran’s I at least thirty observations are needed; therefore, we were unable to calculate spatial 218 

clustering at the county (n=8) level.  219 

 To assess the relationship between Lyme disease incidence and tick-based metrics, we 220 

used generalized linear mixed effects models (GLMER; family = Poisson; link = log) with year 221 

and county as grouping variables to explicitly account for spatiotemporal structure in the data. 222 

We compared GLMER model fits by Akaike Information Criterion (AIC). Lower scores indicate 223 

better model fits; a two-point difference is significant. To determine how accurately the GLMER 224 

models predicted Lyme disease incidence, we calculated Spearman’s rank correlation coefficient 225 

between predicted and observed Lyme disease cases. Further, we used leave-one-out (LOO) 226 

cross validations across years and counties. Each year (or county) of data was iteratively omitted 227 

from the analysis and the compiled sets of predictions from the LOO models were then 228 

compared with predictions based on the full record using root mean square error (RMSE). RMSE 229 

gives the standard deviation of the model prediction error; smaller values indicate better model 230 

performance. For data processing and analyses we used R (R Core Team, 2017) and for mixed 231 

effects modeling we employed the lme4 package (Bates et al., 2014). 232 

 233 

RESULTS AND DISCUSSION: 234 
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Lyme disease data, 2007-2017. A total of 31,471 Lyme disease cases (including confirmed and 235 

probable) has been reported from Connecticut during 2007 to 2017. Of these, 8,048 were 236 

excluded due to unknown town of residence. Of the remaining 23,423 cases, 13,331 (57%) were 237 

initiated through laboratory-based surveillance and 10,092 (43%) through physician-based 238 

reporting.  239 

Tick-based data, 1996-2017. A total of 91,671 I. scapularis ticks was submitted to the CAES-240 

TTL between 1996 and 2017, most of which (91,409; 99.7%) by Connecticut residents. The 241 

majority of these ticks were females (48,747) or nymphs (39,236) but there were also 242 

submissions of males (1,027) and larvae (2,399).  243 

Although we did not assess the precise location the tick was acquired, human tick 244 

encounters were traced to the town of residence or the likely town the tick was acquired, if 245 

known (see Methods). We found a high degree of agreement between the locations of a 246 

submitter’s residence and where the tick was thought to be acquired -- 73,312 (80%) ticks were 247 

acquired and submitted from the same town and 81,171 (89%) were acquired and submitted from 248 

the same county. The finding that the vast majority of ticks were acquired and submitted in the 249 

same town supports the importance of peridomestic risk for tick-borne disease transmission 250 

(Connally et al., 2006; Eisen et al., 2016; Jordan and Egizi, 2019). Nymphal submissions were 251 

markedly higher between 1996 and 2006 compared with between 2007 and 2017 (Table 1); 252 

however we have no explanation for this change. 253 

Of those ticks that were submitted and acquired from the same county between 1996 and 254 

2017, 43,622 were adult females and 34,500 were nymphs (Table 1). A total of 65,056 partially 255 

or fully engorged ticks (34,433 females and 30,632 nymphs) recovered while biting humans 256 

were tested for the presence of B. burgdorferi s.l. The overall prevalence of B. burgdorferi s.l. 257 
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infection in I. scapularis ticks was 21% for nymphs and 33% for adult females (see Table 1 for 258 

annual values). These results are similar to passive surveillance-derived I. scapularis infection 259 

prevalence (all stages combined) in Massachusetts (30% between 2006 and 2012) (Xu et al., 260 

2016) and in New Jersey (38% of adult females and 22% of nymphs between 2006 and 2016) 261 

(Jordan and Egizi, 2019) 262 

Submissions of nymphal and adult female I. scapularis ticks followed a distinct seasonal 263 

pattern (Figure 1). Nymphal tick submissions peaked in June, while submissions of adult female 264 

ticks showed a bimodal pattern with a major peak in April-May and a minor peak in November. 265 

The June peak of nymphal submissions coincides with the June-July peak in reported Lyme 266 

disease cases in Connecticut (Ertel et al., 2012). This finding further supports the understanding 267 

that nymphal bites are responsible for the majority of Lyme disease cases in the Northeast 268 

(Mather et al., 1996; Falco et al., 1999). Nymphal tick submissions in June alone represented 269 

25% of the total I. scapularis submissions, underscoring the temporally focused nature of Lyme 270 

disease risk in Connecticut and throughout the Northeastern United States.  271 

Tick-based data, 2007-2017. When comparing the tick-based risk measures to Lyme disease 272 

incidence, we restricted the analyses to the years 2007-2017. Over this eleven-year period there 273 

were 26,116 submissions of female and nymphal I. scapularis ticks that were submitted and 274 

acquired from the same county in Connecticut. Partially or fully engorged ticks tested for 275 

presence of B. burgdorferi s.l. (n=16,807; 64% of all submitted ticks) included 10,752 females 276 

and 6,055 nymphs. Tick-based risk measures calculated for this temporally restricted dataset 277 

were well correlated, assessed with Spearman’s rank correlation coefficient, with those 278 

calculated for the 1996-2017 period at both the town and county levels (town rate of submitted 279 

nymphs: ρ=0.79, p<0.001; town NIP: ρ=0.59, p<0.001; county rate of submitted nymphs: 280 
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ρ=0.98, p<0.001; and county NIP: ρ=0.90, p=0.002). 281 

The rate of submitted nymphs, calculated as nymphal tick submissions per 100,000 282 

population, ranged from 10.24 in 2012 to 32.12 in 2009 across the eleven-year period (mean = 283 

22.12, SD = 6.99). Generally we note a slight decline in the annual rate of submitted nymphs, 284 

albeit with fluctuations (Figure 2). We note that the rate of submitted nymphs per 100,000 285 

population was much higher in Fairfield County compared to all other counties (Figure 2). The 286 

rate of submitted infected nymphs, follows a similar trajectory -- decreasing over time and 287 

showing substantial spatial variability across counties (Figure 2). NIP also generally decreased 288 

over time but remained markedly steady across counties (Figure 2). 289 

We assessed the association between NIP and the rate of submitted nymphs to determine 290 

if the downward trend in NIP over time is a result of decreasing submission rates. However, by 291 

testing for associations using Pearson’s product-moment correlations, we did not find an 292 

association at either the town (r=0.003; p=0.930) or the county (r=0.028, p=0.799) spatial scale. 293 

Association of Lyme disease incidence and tick-based measures with household income and 294 

land cover. We found positive correlations between median household income and the rate of 295 

submitted nymphs (r=0.50, p<0.001) and the rate of submitted infected nymphs (r=0.48, 296 

p<0.001) at the town spatial scale but not at the county level. We did not find a relationship 297 

between NIP and median household income at either spatial scale, nor did we find a relationship 298 

between any tick-based risk measure and the degree of developed land at either spatial scale. We 299 

did not find a significant association between median household income and reported number of 300 

Lyme disease cases at either spatial scale. However, we did find a strong negative correlation 301 

between Lyme disease incidence and the degree of developed land at both the scale of town (r=-302 

0.61, p<0.001) and county (r=-0.91, p=0.002).  303 
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 The positive associations between the rate of submitted nymphs and the rate of submitted 304 

infected nymphs with median household income imply that participation in the tick submission 305 

program increases with income. Perhaps wealthier communities have more knowledge of or 306 

access to the CAES-TTL. In contrast, the lack of an association between reported Lyme disease 307 

incidence and median household income suggests that Lyme disease case reporting is 308 

independent of the community’s wealth. Lot size has been shown to be associated with tick 309 

infestation and Lyme disease risk, with larger lots more likely to have a wooded area, higher 310 

numbers of ticks, and Lyme disease cases (Maupin et al., 1991; Cromley et al., 1998). The 311 

association between the rate of submitted infected nymphs and median household income may 312 

indicate that households with higher income tend to have larger lots with greater likelihood of 313 

including wooded areas. The degree of developed land use was associated with Lyme disease 314 

incidence but none of the tick-based metrics. The increase in reported Lyme disease incidence in 315 

less developed areas may therefore be due to human behavioral differences in urban versus rural 316 

areas. While we can only speculate on the differential mechanisms underlying these 317 

relationships, we are assured that, at least as they were measured, neither covariate confounds the 318 

relationship between these tick-based risk metrics and Lyme disease incidence. 319 

Spatiotemporal patterns, 2007-2017. Overall, annual nymphal submissions were correlated 320 

(Spearman’s rank correlation) with annual reported Lyme disease incidence both at the town 321 

(ρ=0.26, p<0.001, n=1,859 observations) and the county (ρ=0.66, p<0.001, n=88 observations) 322 

scales. 323 

To explicitly assess temporal changes in the rate of submitted nymphs, NIP, the rate of 324 

submitted infected nymphs, and Lyme disease incidence, we used generalized linear models with 325 

year as an ordinal integer (Table 2). The models suggest that the rate of submitted nymphs, NIP, 326 



Page 16 of 45

Acc
ep

te
d 

M
an

us
cr

ip
t

16  

the rate of submitted infected nymphs, and Lyme disease incidence decreased over time between 327 

2007 and 2017 (Table 2; βs<1).  328 

While Lyme disease cases have increased overall in the United States (Centers for 329 

Disease Control and Prevention, 2015), other researchers have noted a downward trend in Lyme 330 

disease incidence in states previously classified as high incidence (Schwartz et al., 2017). Such 331 

downward trends may be due to reporting fatigue, human behavioral changes (e.g., improved 332 

prevention and control), decreasing tick densities, among other factors.  333 

The observation that NIP decreased over time between 2007 and 2017 differs from 334 

reports where infection prevalence in field-collected nymphs (Diuk-Wasser et al., 2012; Feldman 335 

et al., 2015) and passively collected I. scapularis ticks (Xu et al., 2016; Jordan and Egizi, 2019) 336 

remain relatively stable over time. In contrast to endemic areas, in areas of emergence infection 337 

prevalence has been shown to increase over time (Nelder et al., 2014; Gasmi et al., 2016). The 338 

fluctuations in rates of submitted (infected) nymphs are in agreement with changes in tick 339 

densities and the density of infected ticks over time, which in turn may be due to changes in host 340 

populations and climatic conditions (Stafford et al., 1998; Wilson, 1998; Killilea et al., 2008). 341 

However, in a hyperendemic Lyme disease state such as Connecticut we cannot rule out the 342 

possibility that tick submissions to the CAES-TTL have declined due to waning public interest. 343 

We note differences in Lyme disease incidence across counties in Connecticut. Lyme 344 

disease incidence was highest in Windham, Tolland, and New London counties and lowest in 345 

New Haven, Fairfield, and Hartford counties (Figure 2). At the town scale, we found evidence of 346 

spatial clustering for Lyme disease incidence (Moran’s I: 0.547, z=10.307, p<0.001); 347 

specifically, we note high incidence towns at the intersection of Tolland, Windham and New 348 

London Counties and low incidence towns in southwestern Hartford and northeastern New 349 
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Haven Counties (Figure 3). 350 

At the town scale, we found evidence of spatial clustering for the rate of submitted 351 

nymphs (Figure 4; Moran’s I: 0.447, z=8.776, p<0.001), and the rate of submitted infected 352 

nymphs (Figure 5; Moran’s I: 0.412, z=7.997, p<0.001). Indeed, the majority (81%) of submitted 353 

nymphs were from Fairfield and New Haven Counties (Figure 2). There was little difference in 354 

NIP across towns (21.1%, 95%CI: 20.0%, 22.1%) or counties (21.0%, 95%CI: 19.4%, 22.5%) in 355 

Connecticut between 2007 and 2017 (Figure 2) and NIP did not display spatial clustering (Figure 356 

6; Moran’s I: 0.07, z=1.52, p=0.13). NIP may be near uniform, at least at the spatial scale of 357 

counties or towns, in states or regions where I. scapularis is long established and ubiquitous 358 

(New York City Department of Health and Mental Hygiene, 2018). Of course, there is 359 

aggregation of estimates at the county and town levels. At smaller spatial scales, such as for 360 

individual households, there is likely a great deal of variability in tick-based risk measures 361 

(Ostfeld et al., 1996; Pardanani and Mather, 2004; Killilea et al., 2008). Interestingly the finding 362 

that NIP is relatively steady across Connecticut is different from previous study in Connecticut 363 

showing that before 1991 ticks infected with B. burgdorferi were concentrated to the coastline 364 

(Magnarelli et al., 1993), indicating a shift from emergent to endemic populations of I. 365 

scapularis. If it is true that NIP is fairly stable across the state within any year but changes over 366 

time, then repeated annual sampling in a few locations in an active tick surveillance program 367 

might provide sufficient information to quantify risk especially when resources are limited.  368 

After accounting for population, we note higher Lyme disease incidence in more rural 369 

counties of Connecticut (as has been noted previously (Cromley et al., 1998)), such as Windham 370 

and Tolland, yet lower rates of submitted (infected) nymphs–estimates that similarly account for 371 

population–and similar NIP across counties (Figure 2). Collectively, these findings suggest that 372 
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human behavior is playing a large part in encounters with infected ticks and Lyme disease 373 

transmission risk (Nicholson and Mather, 1996). There may also be a need to better promote the 374 

CAES-TTL program in more rural parts of the state.  375 

Future research should assess whether the rates of submitted nymphs are associated with 376 

the density of host-seeking nymphs. Furthermore, a comparison of infection prevalence in 377 

nymphal ticks collected from humans versus from the environment would be needed to 378 

determine if the trend for infection prevalence in nymphs removed from humans (in this case a 379 

decreasing trend) directly reflect that of nymphs in the environment, or if changes in human use 380 

of the landscape over time could have led to increased exposure to nymphs residing in 381 

microhabitats with lower tick density and less intense enzootic transmission of B. burgdorferi 382 

s.l., or if decreasing submission and case reports are simply explained by fatigue or reduced 383 

participation. Future studies should also explore whether passive (ticks on people) or active (drag 384 

sampling) surveillance provides better estimates of human disease risk. This comparison should 385 

also include a cost analysis to determine if any predictive improvement in active surveillance 386 

outweighs the added costs of these programs (Nelder et al., 2014). Finally, the findings that NIP 387 

decreases temporally between 2007 and 2017 but is geographically uniform, warrants further 388 

investigation.  389 

Spatiotemporal modeling, 2007-2017. We found general declines in tick-based risk measures 390 

as well as Lyme disease incidence during the period 2007-2017. We also found divergent spatial 391 

patterns in the rates of submitted (infected) nymphs with those for Lyme disease incidence. We 392 

used a generalized linear mixed effects model to explicitly account for these spatiotemporal 393 

differences in tick-based risk measures and Lyme disease incidence to determine (1) if within 394 

each county (or town), there is a relationship between these tick-based risk measures and Lyme 395 
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disease incidence and (2) if we can use these tick-based risk measures to predict Lyme disease 396 

for each county (or town).  397 

At both the county and town spatial scales, we found that over the eleven years 398 

investigated an increase in the rate of submitted (infected) nymphs was predictive of increased 399 

Lyme disease incidence for each county (or town). Table 3 shows the coefficient estimates for 400 

each tick-based risk metric, the associated AIC score, and Spearman’s rank correlation 401 

coefficient for the model-predicted and observed Lyme disease incidence. Overall, we find better 402 

model performance at the county compared to the town spatial scale. We note that the models 403 

with NIP are not significant, but that inclusion of NIP with the rate of submitted nymphs in the 404 

tick-based risk metric rate of submitted infected nymphs is an improvement over the predictive 405 

value of just the rate of submitted nymphs. Moreover the inclusion of the percent of developed 406 

land further explains variability in Lyme disease incidence and improves model fit. We 407 

conducted chi-squared tests to assess whether the inclusion of predictors led to statistically 408 

significant improvements in model fit as measured by a reduction in the residual sum of squares. 409 

Compared to a null model, the rate of submitted infected nymphs improved model performance 410 

(χ2 = 12.874, p < 0.001). Inclusion of the percent of developed land in the county model further 411 

improved model fit without influencing the effect estimate for the rate of submitted infected 412 

nymphs (χ2 = 15.599, p < 0.001). Of the models tested, the rate of submitted infected nymphs 413 

along with the percent of developed land as a covariate at the county scale provided the best 414 

model fit for predicting Lyme disease incidence as measured by AIC (AIC = 1,267, Table 3). 415 

Fitted model values (predicted values) were strongly and positively correlated with 416 

observed values of Lyme disease incidence at the county scale (Table 3, ρs range from 0.945 to 417 

0.946, p<0.001; Figure 7, Full Model). This indicates a signal between the rate of submitted 418 
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(infected) nymphs with Lyme disease incidence regardless of potential spatiotemporal biases in 419 

passive tick or Lyme disease surveillance. 420 

Spatiotemporal model validation, 2007-2017. By conducting leave-one-out temporal and 421 

spatial cross validations (LOOTCV and LOOSCV, respectively), we found the full model 422 

(RMSE = 40.91) performed better than either the LOOTCV model (RMSE = 73.27) or the 423 

LOOSCV model (RMSE = 136.70) (Figure 7). The lower RMSE for the LOOTCV suggests that 424 

out of sample predictions (i.e. model predictions of a set of observations different than those that 425 

the model was fitted on) is better year-to-year than county-to-county. Models trained on data 426 

from certain counties (such as counties with more observations) may provide better predictions 427 

than models trained on data from others.  428 

Conclusion. While Lyme disease has been endemic in Connecticut for over three decades, 429 

disease occurrence is still spreading geographically in other parts of the Eastern United States 430 

(Eisen and Eisen, 2018). We can learn from this Connecticut based research and employ the 431 

results in emergent areas facing a growing threat of Lyme disease (Stone et al., 2017). Results 432 

from this longitudinal analysis in an endemic setting suggest that the rate of submitted infected 433 

nymphs are highly predictive of Lyme disease incidence for each town or county. These metrics 434 

could be calculated from other passive surveillance datasets in emergent areas, but their accuracy 435 

in predicting Lyme disease occurrence would need to be evaluated. There are some very 436 

important caveats to passive tick surveillance programs, which were well accounted for in this 437 

study but can be difficult to achieve: tick identification being done by trained individuals and 438 

exclusion of ticks acquired while traveling out of county or state.  439 

The use of passive surveillance to build predictive models for public health decision-440 

making is limited, as it has been asserted that passive surveillance data are biased (Beck et al., 441 
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2014). However, tick submissions through passive surveillance were shown to predict Lyme 442 

disease cases at a town level in an emergent region in Canada (Ripoche et al., 2018). Moreover, a 443 

predictive model for Lyme disease based on passive surveillance data was successfully validated 444 

using active surveillance data in Canada (Soucy et al., 2018).  445 

In this study we analyzed an eleven-year record of passive surveillance data with 23,432 446 

reported Lyme disease cases and 26,116 tick submissions and found a strong relationship 447 

between the rate of submitted infected nymphs with Lyme disease incidence for each county 448 

over time. Our findings underscore the relevance of using passive surveillance based on ticks 449 

recovered from humans to guide informed decisions concerning prevention and treatment of tick-450 

borne diseases. 451 

  452 
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TABLES: 453 

Table 1. Annual Ixodes scapularis Tick Submissions to the CAES-TTL, 1996-2017 454 

No. Submitted No. Tested (% positive) 

Year Nymph Adult Nymph Adult 
1996 2563 1789 2403 (15%) 1565 (29%) 
1997 1195 1133 1113 (12%) 1041 (27%) 
1998 1877 1938 1764 (19%) 1824 (33%) 
1999 3235 2870 3138 (16%) 2737 (32%) 
2000 3178 2545 3085 (17%) 2402 (32%) 
2001 2464 2550 2388 (17%) 2448 (36%) 
2002 3401 2481 3386 (21%) 2447 (39%) 
2003 1684 3768 1673 (23%) 3694 (35%) 
2004 1599 2478 1596 (35%) 2438 (42%) 
2005 3193 1983 3174 (23%) 1936 (36%) 
2006 1557 2525 857 (16%) 1149 (27%) 
2007 806 1358 540 (36%) 684 (33%) 
2008 996 1606 566 (20%) 731 (26%) 
2009 1094 1979 659 (41%) 905 (34%) 
2010 663 1221 461 (34%) 597 (29%) 
2011 622 1716 424 (16%) 824 (27%) 
2012 366 1210 270 (15%) 556 (20%) 
2013 1142 959 824 (29%) 520 (33%) 
2014 520 1492 339 (28%) 789 (27%) 
2015 847 1646 718 (27%) 1297 (33%) 
2016 740 1543 561 (19%) 1239 (33%) 
2017 758 2832 693 (16%) 2610 (36%) 
Total 34500 43622 30632 (21%) 34433 (33%) 

 455 

Total numbers of I. scapularis submitted and/or tested for B. burgdorferi s.l. by life stage 456 

(nymph and adult female) for each year 1996-2017.  457 

  458 
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Table 2. Temporal Trends 459 

  Year β (95% CI) 
Rate of Submitted Nymphs 0.974 (0.968,0.981) 
Nymphal Infection Prevalence 0.950 (0.936 0.964) 
Rate of Submitted Infected Nymphs 0.924 (0.855 0.999) 
Lyme Disease Incidence 0.972 (0.968 0.976) 

 460 

Temporal trends of tick-based risk metrics (rate of submitted nymphs, nymphal infection 461 

prevalence, and rate of submitted infected nymphs) and Lyme disease incidence across 462 

Connecticut. Here we report the coefficient estimate (β) for year. β Values under 1 support a 463 

decrease in each tick-based risk metric and Lyme disease incidence over time. 464 

  465 
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Table 3. Model Results Comparing Tick-based risk metric predictive value 466 

Model Parameters β (95% CI) AIC ρ 

Town Spatial Scale (n=1859) 
Rate of Submitted Nymphs 1.200 (1.180, 1.221) 10711 0.598 
Nymphal Infection Prevalence  0.988 (0.969, 1.007) 10263 0.598 
Rate of Submitted Infected Nymphs 1.187 (1.166, 1.208) 9970 0.595 
Rate of Submitted Nymphs + Degree Developed 1.017 (0.999, 1.036) 7271 0.724 
Nymphal Infection Prevalence + Degree Developed 0.985 (0.966, 1.004) 6762 0.720 
Rate of Submitted Infected Nymphs + Degree Developed 1.021 (1.002, 1.041) 6760 0.720 

County Spatial Scale (n=88) 
Rate of Submitted Nymphs 1.050 (1.015, 1.087) 1304 0.946 
Nymphal Infection Prevalence  0.998 (0.976, 1.020) 1294 0.944 
Rate of Submitted Infected Nymphs 1.050 (1.022, 1.078) 1281 0.945 
Rate of Submitted Nymphs + Degree Developed 1.051 (1.016, 1.088) 1290 0.946 
Nymphal Infection Prevalence + Degree Developed 0.998 (0.976, 1.020) 1281 0.944 
Rate of Submitted Infected Nymphs + Degree Developed 1.051 (1.023, 1.079) 1267 0.945 

 467 

Generalized linear mixed effect models (family=Poisson, link=log) with year and county as 468 

crossed random effects. For each set of model parameters tested we compare: the coefficient (β) 469 

estimate for the tick-based risk metric is given along with the 95% confidence interval; AIC is 470 

the Akaike Information Criterion for the model, lower is better; and Spearman’s rank correlation 471 

coefficient (ρ) for the model-predicted and observed Lyme disease incidence are given. The 472 

models were conducted at two spatial scales, town and county. There were 1,859 observations at 473 

the town spatial scale (169 towns and 11 years); and 88 observations at the county spatial scale 474 

(8 counties and 11 years). 475 

  476 
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FIGURE CAPTIONS: 477 

Figure 1. Submission phenology. 478 

Submission phenology of adult female and nymph Ixodes scapularis ticks to the CAES-TTL by 479 

month (1996-2017). 480 

 481 

Figure 2. Descriptive spatial and temporal Lyme disease and tick-based risk measures. 482 

Cumulative Lyme disease incidence per 100,000 population, cumulative rate of submitted 483 

nymphs per 100,000 population, cumulative nymphal infection prevalence (%), and the 484 

cumulative rate of submitted infected nymphs by year and county for the years 2007-2017. 485 

 486 

Figure 3. Lyme disease incidence. 487 

Cumulative (2007-2017) total Lyme disease incidence (per 100,000) broken into quartiles and 488 

mapped by town. 489 

 490 

Figure 4. Rate of submitted nymphs. 491 

Cumulative (2007-2017) rate of submitted nymphs per 100,000 populations broken into quartiles 492 

and mapped by town. 493 

 494 

Figure 5. Rate of submitted infected nymphs. 495 

Cumulative (2007-2017) rate of submitted infected nymphs per 100,000 population broken into 496 

quartiles and mapped by town. 497 

 498 

Figure 6. Nymphal infection prevalence. 499 
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Cumulative (2007-2017) nymphal infection prevalence broken into quartiles and mapped by 500 

town.  501 

 502 

Figure 7. Model fits. 503 

Relationship of observed Lyme disease cases (red dots) and model predictions of Lyme disease 504 

cases (blue line). Predictions based on best fitting model by AIC -- the model including the rate 505 

of submitted infected nymphs and the degree of developed land use at the county spatial scale. 506 

  507 
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Abbreviations: AIC: Akaike Information Criterion; CAES: Connecticut Agricultural 508 

Experiment Station; CDPH: Connecticut Department of Public Health; DIN: Density of Infected 509 

Nymphs; DON: Density of Nymphs; GLMER: Generalized Linear Mixed Effects Model; LOO: 510 

Leave-one-out; NIP: Nymph Infection Prevalence; NLCD: National Land Cover Database; PCR: 511 

Polymerase Chain Reaction; RMSE: Root Mean Square Error; TTL: Tick Testing Laboratory; 512 

US: United States. 513 
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