Lyme Disease Overdiagnosis in a Large Healthcare System: A Population-based, Retrospective Study

Bryant J. Webber, MD, MPH, Rachael P. Burganowski, MS, Leah Colton, PhD, James D. Escobar, MPH, Sonal R. Pathak, MPH, Kelly J. Gambino-Shirley, DVM, MPH

PII: S1198-743X(19)30086-2
DOI: https://doi.org/10.1016/j.cmi.2019.02.020
Reference: CMI 1587

To appear in: Clinical Microbiology and Infection

Received Date: 10 January 2019
Revised Date: 14 February 2019
Accepted Date: 15 February 2019


This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Lyme Disease Overdiagnosis in a Large Healthcare System: A Population-based, Retrospective Study

Intended Category: Original Article

Bryant J. Webber, MD, MPH
Rachael P. Burganowski, MS
Leah Colton, PhD
James D. Escobar, MPH
Sonal R. Pathak, MPH
Kelly J. Gambino-Shirley, DVM, MPH

1. Public Health and Preventive Medicine Department, U.S. Air Force School of Aerospace Medicine, Wright-Patterson AFB, OH
2. Oak Ridge Institute for Science & Education, Department of Energy, Oak Ridge, TN
3. DataRev LLC, Atlanta, GA

Bryant Webber, MD, MPH, FACPM
Public Health and Preventive Medicine Department
U.S. Air Force School of Aerospace Medicine
2510 Fifth Street Bldg 840 Rm W318
Wright-Patterson AFB, OH

Phone: 1-937-938-3066 | Fax: 1-937-938-2500 | Email: bryant.webber@us.af.mil
Abstract

Objectives. To evaluate the impact of false positive IgM immunoblots on Lyme disease treatment and case reporting in a large healthcare system.

Methods. We obtained results of all Lyme disease serologic tests ordered at U.S. Air Force healthcare facilities in the United States between January 2013 and December 2017. We conducted chart reviews to adjudicate positive IgM immunoblots (from two-tier and independent testing) as true positives or false positives using established criteria, and we assessed whether these cases were reported to the U.S. Department of Defense surveillance system.

Results. Of the 18,410 serum tests (17,058 immunoassays and 1,352 immunoblots) performed on 15,928 unique persons, 249/1,352 (18.4%) IgM immunoblots were positive. After excluding repeat tests, insufficiently documented cases, and subjects with a history of Lyme disease, 212 positive IgM immunoblot cases were assessed. A total of 113/212 (53.3%) were determined to be false positives. Antibiotics were prescribed for Lyme disease for 97/99 (98.0%) subjects with a true positive test and 91/113 (80.5%) subjects with a false positive test. The number of false positive cases reported to the surveillance system was identical to the number of unreported true positive cases (n=44).

Conclusions. Lyme disease serological tests were overutilized in a large healthcare system, and positive results were frequently misinterpreted, leading to misdiagnosis and widespread antibiotic misuse. Underreporting of true positive cases was offset by overreporting of false positive cases, suggesting that the discrepancy between the reported incidence and true incidence of Lyme disease may not be as significant as previously assumed.
Introduction

Transmitted by ixodid ticks and caused by infection with *Borrelia burgdorferi* sensu lato spirochetes, Lyme disease is the most common tick-borne infection in North America and much of Eurasia.¹ In the United States, Lyme disease cases reported to the National Notifiable Disease Surveillance System² and the Department of Defense surveillance system³,⁴ approximately doubled in number from 2004 to 2016, and it is assumed that most cases remain unreported.²

The diagnostic workup of early Lyme disease depends on the patient’s history and presentation.⁵ Patients with an exposure risk who present with the characteristic erythema migrans lesion should be empirically treated without confirmatory testing.⁵,⁶ Given the possibility of false positive results, laboratory testing should also be avoided among patients without an exposure risk or who are experiencing only nonspecific symptoms (e.g., pain and fatigue).⁶-⁹ Laboratory workup in the United States⁵-⁷ and parts of Europe¹⁰ favors a two-step serologic test approach, wherein positive or equivocal first-tier immunoassays are reflexed to second-tier Western immunoblots—the interpretation of which in the United States is guided by IgM and IgG criteria established by consensus opinion at the Second National Conference on Serologic Diagnosis of Lyme Disease.¹¹

Inappropriately ordering Lyme disease serologic tests or incorrectly interpreting results may lead to unnecessary antibiotic use, exposing patients to potential adverse events and promoting antimicrobial resistance. It may also encourage the attribution of nonspecific symptoms to Lyme disease, perpetuating misconceptions concerning chronic¹² and relapsing¹³ manifestations. In extreme cases, malignancies have been misdiagnosed as Lyme disease,¹⁴ and patients have died from superfluous therapy.¹⁵,¹⁶
This study was initiated after two Lyme disease cases were reported to the U.S. Department of Defense surveillance system. Both patients presented with influenza-like illness in areas without vector ticks, and neither had a documented travel history. Despite more plausible diagnoses, both were reported as confirmed Lyme disease. These cases contest the assumption that Lyme disease is underreported to passive surveillance systems. Although overdiagnosis based on false positive immunoblots has been described in adult and pediatric practices within endemic areas, the prevalence of false positives across a large healthcare system has yet to be assessed. The objective of this study was to determine the clinical and public health impact of Lyme disease overdiagnosis in a large healthcare system that spans endemic and non-endemic areas.

Methods

Study Design

This population-based, retrospective study was approved by the Air Force Research Laboratory Institutional Review Board. We obtained all Lyme disease serologic tests ordered at U.S. Air Force healthcare facilities in the United States between January 1, 2013, and December 31, 2017. Subjects included service members, military retirees, and their relatives who accessed healthcare at any of the 63 U.S. Air Force military treatment facilities in the United States, which are scattered through areas endemic and non-endemic for Lyme disease. Providers at these facilities are expected to follow U.S. national guidelines when diagnosing and treating Lyme disease. Subject age was based on the date of the index test.

Testing Assumptions
Because first- and second-tier Lyme disease tests are recorded separately in the Composite Health Care System, we assumed that immunoblots certified within 7 days of an enzyme-linked immunoassay or immunofluorescence assay were reflex tests from the same serum sample. We assumed further that all immunoassays and immunoblots were conducted similarly throughout the study period, but slightly different assays and methodology may have been utilized by the multiple military and commercial laboratories conducting the tests.

Data Abstraction

The principal investigator (BJW) conducted a standardized electronic chart review in the Armed Forces Health Longitudinal Technology Application for all subjects with a positive serum IgM immunoblot. The following variables were abstracted: age; sex; chief complaint or complaints for healthcare seeking; symptom onset date; laboratory sample collection date; state of residence; documented travel within 30 days of clinical presentation; reported tick bite; and evidence of erythema migrans, acute febrile illness, cranial nerve palsy, carditis, and meningitis. These conditions, as well as travel history and tick bite, were assumed to be negative if not indicated in the chart. Erythema migrans could either be documented or described as such in the clinical note. Acute febrile illness was defined as a provider diagnosis of fever or temperature ≥38.0°C at clinical presentation. Cranial nerve palsy, carditis, and meningitis were restricted to provider diagnoses. Atypical symptoms were defined as complaints not associated with these usual clinical presentations of acute Lyme disease. We verified that at least two of the three diagnostic IgM immunoblot bands (24, 39, and 41 kDa) were recorded as positive. Subjects with a documented history of Lyme disease or incomplete electronic health records (i.e., no notes associated with the Lyme disease serology order) were excluded from analysis. For subjects with
multiple positive IgM immunoblots during the study period, subsequent tests were excluded given the possibility of prolonged seropositivity after successful treatment.\textsuperscript{19}

Criteria for Assessing Immunoblots

We used criteria published by Seriburi and colleagues\textsuperscript{17} to adjudicate positive IgM immunoblot cases as true or false positives. A test was considered to be a false positive if at least one of four conditions applied: (1) testing failed to achieve seropositivity criteria, (2) the subject lacked exposure risk, (3) the subject was asymptomatic or reported only nonspecific or atypical symptoms, or (4) follow-up serologic testing within 30 days of the positive IgM immunoblot was negative. Failure to achieve seropositivity criteria was subcategorized as (1A) first-tier test omitted, (1B) first-tier test negative, (1C) symptoms persisted beyond 30 days with a negative IgG immunoblot, and (1D) IgM immunoblot with fewer than two positive bands.\textsuperscript{11} Lacking exposure risk was subcategorized as (2A) testing ordered in December through March and (2B) residence in a state without \textit{Ixodes scapularis} or \textit{I. pacificus} ticks (i.e., Alaska, Arizona, Colorado, Hawaii, Idaho, Montana, Nebraska, Nevada, New Mexico, South Dakota, and Wyoming)\textsuperscript{20} and no documented travel history within 30 days of presentation.

Public Health Reporting

Per U.S. federal policy,\textsuperscript{21,22} all Lyme disease cases diagnosed at military treatment facilities must be reported to the Department of Defense surveillance system. This system uses the Lyme disease case definition developed by the U.S. Council of State and Territorial Epidemiologists, wherein a combination of clinical, epidemiologic, and laboratory criteria are used to classify cases as confirmed, probable, or suspected.\textsuperscript{23} Cases are classified and reported by the local public
health unit at each military treatment facility, similar to the process used in civilian jurisdictions.

We queried the surveillance system for cases reported between January 1, 2013, and September 30, 2018, allowing for delayed reporting up to 9 months after the study period end date.

Statistical Analysis

Descriptive statistics and two-sided Fisher exact tests with 95% confidence intervals (CI) were used to describe the history and clinical presentation of subjects, to compare false positive proportions by age (children [aged <18 years] versus adults [aged ≥18 years]) and by sex, and to assess the prevalence of true and false positives reported to the surveillance system. Data were analysed using Base SAS 9.4.

Results

Population

In total, 18,410 serum tests (17,058 immunoassays and 1,352 immunoblots) were performed on 15,928 unique subjects (8,306 females and 7,622 males; mean age: 40 years [range: 3 months to 95 years]) presenting at Air Force healthcare facilities in the United States over the study period. Of the first-tier serologic tests, 819/17,058 (4.8%) were positive or equivocal, and of these 753/819 (91.9%) were reflexed to immunoblot testing. An additional 507 immunoblots were performed without first-tier testing, and 92 were performed after a negative screen. Of all immunoblots performed, 315/1,352 (23.3%) were positive: IgM only (n=178); IgG only (n=66); IgM and IgG (n=71). Positive IgG only immunoblots (n=66) were excluded, as were positive IgM immunoblots that (1) represented a repeat positive (n=21), (2) contained insufficient
documentation in the chart (n=12), or (3) occurred in someone previously diagnosed with Lyme disease (n=4), leaving 212 tests for assessment (Figure 1).

Classifications of True and False Positive Tests

Of the 212 IgM immunoblots included, 113 were adjudicated as false positives and 99 as true positives. False positive and true positive proportions were 53.3% (95% CI: 46.3%, 60.2%) and 46.7% (95% CI: 39.8%, 53.7%), respectively. False positive results met one (33/113 [29.2%]), two (54/113 [47.8%]), three (22/113 [19.5%]), or all four (4/113 [3.5%]) criteria (Table 1). If all subjects were assumed to have an exposure risk, the true positive proportion would increase to 47.6% (95% CI: 40.8%, 54.6%). False positive proportions were different between adults (95/163 [58.3%]) and children (18/49 [36.7%]) (p=0.008) and between females (66/100 [66.0%]) and males (47/112 [42.0%]) (p<0.001).

History and Physical Exam Findings

False positive IgM immunoblots were identified for subjects residing in Texas (22/113 [19.5%]), Maryland (18/113 [15.9%]), Virginia (10/113 [8.8%]), and 28 other states. True positives occurred in subjects who resided in or recently traveled to 22 states, the most common of which were Maryland (28/99 [28.3%]), Virginia (15/99 [15.2%]), New York (9/99 [9.1%]), New Jersey (7/99 [7.1%]), and Pennsylvania (7/99 [7.1%]).

Seven subjects with false positive results were asymptomatic at presentation. The chief complaint or complaints of subjects with atypical presentation included arthralgia (38/90 [42.2%]), fatigue (18/90 [20.0%]), rash (15/90 [16.7%]), headache (9/90 [10.0%]), neuropathy (9/90 [10.0%]), skin abscess (7/90 [7.8%]), myalgia (6/90 [6.7%]), visual changes or ocular pain...
(5/90 [5.6%]), vertigo (4/90 [4.4%]), syncope (3/90 [3.3%]), and gastrointestinal discomfort (2/90 [2.2%]). Subjects classified as true positives presented with erythema migrans (62/99 [62.6%]), acute febrile illness (56/99 [56.6%]), cranial nerve palsy (10/99 [10.1%]), carditis (4/99 [4.0%]), and meningitis (4/99 [4.0%]). A tick bite was reported by 14/113 (12.4%) subjects with a false positive test and 31/99 (31.3%) subjects with a true positive test.

Unnecessary Testing

Serologic testing was likely unwarranted in 158/212 (74.5%) subjects included in the analysis: 104 subjects had a low pretest probability of Lyme disease due to atypical presentation or lack of exposure risk, and 54 subjects could have been treated without serologic testing because they presented with erythema migrans in the context of exposure risk.

Antibiotic Use

Most subjects classified as false positives (91/113 [80.5%]) received antibiotics for a documented indication of Lyme disease: oral doxycycline alone (n=78); oral amoxicillin alone (n=10); oral cefuroxime, clarithromycin, and minocycline (n=1); intravenous ceftriaxone alone (n=1); and oral doxycycline and intravenous ceftriaxone (n=1). Nearly all subjects classified as true positives (97/99 [98.0%]) received antibiotics: oral doxycycline alone (n=81), oral amoxicillin alone (n=12), intravenous ceftriaxone alone (n=2), and oral doxycycline and intravenous ceftriaxone (n=2).

Case Reporting
A total of 55/99 (55.6%) true positive cases were reported to the U.S. Department of Defense surveillance system, compared to 44/113 (38.9%) of false positives \( (p=0.011) \). For the reported cases, 50/55 (90.9%) true positives and 41/44 (93.2%) false positives were classified as confirmed or probable.

**Discussion**

Of the positive Lyme disease IgM immunoblots obtained in a large U.S. healthcare system, we adjudicated 113/212 (53.3%) as false positives. Assuming all subjects had a genuine exposure risk, over half would still be considered false positives by failing to meet seropositivity criteria,\(^{11}\) by presenting asymptomatically or atypically, by having negative follow-up serologic testing within 30 days of the positive IgM immunoblot, or by exhibiting a combination of these criteria. The false positive percentage in this study exceeds those previously noted in adult (27.5%)\(^{17}\) and pediatric (28.7%)\(^{18}\) populations within highly endemic areas. This may be explained by the broader geographic distribution of cases in the present cohort, as serology features a lower positive predictive value in less endemic or non-endemic areas.\(^{5,9,13}\) Despite its high specificity when used as a second-tier test,\(^{19}\) the Lyme disease IgM immunoblot result should be interpreted in light of the local disease prevalence.\(^{5,9,13}\) Even in endemic areas, 64/144 (44.4%) clinicians misinterpreted a positive immunoblot result, and 67/144 (46.5%) admitted confusion regarding itemized band results.\(^{24}\) Laboratories could assist clinicians in two ways: first, by requiring documentation of symptom duration on serology orders and, for patients with symptoms persisting beyond 30 days, reflexing positive or equivocal first-tier tests to the IgG immunoblot alone;\(^{5,24}\) and second, by changing the format of immunoblot results so the interpretation is more easily distinguished from the individual bands.
This study highlights additional concerns regarding laboratory testing for Lyme disease.

First, while two-tier testing is considered the standard of care in the United States (whereas European guidelines vary according to local epidemiology and microbiology), 599/1,352 (44.3%) immunoblots were performed after a negative or omitted immunoassay. Second, the number of positive immunoblots was small relative to the large volume of diagnostic workups. Accounting for both immunoassays and immunoblots performed independently of first-tier tests, 315/17,565 (1.8%) workups resulted in a positive immunoblot (IgM, IgG, or both). Since this pre-test probability is far lower than the recommended 10% or 20% for a diagnostic test, the positive predictive value in this population would be far from desirable. Third, serology was not uniformly reproducible, as 9/212 (4.2%) subjects tested seronegative within 30 days of a positive IgM. Of note, discordance was even higher in the study by Seriburi and colleagues, in which 20/50 (40.0%) subjects tested seronegative within 4 weeks of a positive IgM. Finally, while this study focused on false positive IgM immunoblots, overdiagnosis may also occur subsequent to false positive IgG results; this should be investigated in future research.

To enhance Lyme disease diagnostics on a population level, reducing unnecessary testing is more important than improving laboratory assays. Among the subjects with a true positive IgM immunoblot in our cohort, 54/99 (54.5%) presented with erythema migrans and an exposure risk and therefore could have been diagnosed and treated without laboratory testing. Overreliance on laboratory confirmation was also noted in a large survey of healthcare providers, in which only 373/2,000 (18.7%) chose to withhold serologic testing in a scenario describing a patient in an endemic area who had classic erythema migrans. Laboratory testing is also unwarranted when patients have not been in an area with vector ticks or present with only atypical symptoms (or asymptotically), which characterized 104/113 (92.0%) of the false positive IgM
immunoblots in this study. Among these, 14/104 (13.5%) subjects reported a tick bite, suggesting the bite alone may have prompted unnecessary testing.

The ubiquity of nonspecific symptoms among patients evaluated for Lyme disease has been described previously.\textsuperscript{13,17,26} Since these symptoms can be chronic and debilitating, clinicians may feel pressured to order Lyme disease serologic tests, even in areas of low pretest probability.\textsuperscript{26} In the present study, 91/113 (80.5%) subjects with a false positive IgM immunoblot received antibiotics for Lyme disease, including intravenous ceftriaxone for two subjects, suggesting that antibiotic stewardship should begin with appropriate laboratory testing. Clinicians may find it easier to explain why Lyme disease serologic tests are unnecessary in the first place, rather than explaining why antibiotics are unnecessary after obtaining a false positive result. These discussions can be particularly challenging in the context of prolonged, recurring, and atypical symptoms—especially when a patient has already been misdiagnosed with Lyme disease. Advice for clinicians in these situations has been published elsewhere.\textsuperscript{12}

Estimates of Lyme disease incidence around the world typically assume a large burden of unrecognized cases.\textsuperscript{2,27} For example, in light of medical claim\textsuperscript{28} and commercial laboratory\textsuperscript{29} data, the true incidence of Lyme disease in the United States is thought to be 8- to 10-fold higher than the reported incidence.\textsuperscript{2} The present study challenges this assumption. In our cohort, 55/99 (55.6%) true positive cases and 44/113 (38.9%) false positive cases were reported to the U.S. Department of Defense surveillance system. Forty-four true positive cases were not reported, which was offset by the 44 false positive cases that were reported. Moreover, the vast majority of true positives (50/55 [90.9%]) and false positives (41/44 [93.2%]) were classified as confirmed or probable cases in the surveillance system, suggesting that false positives affect the disease incidence reported by the U.S. Centers for Disease Control and Prevention, which excludes
suspected cases. Although passive surveillance systems underestimate the incidence of all
diseases to the extent persons do not seek care, the discrepancy between the reported incidence
and true incidence of Lyme disease may be smaller than assumed because of misinterpretation of
IgM immunoblot results by clinicians and public health practitioners. Of note, surveillance
systems that rely entirely on laboratory testing would miss cases diagnosed clinically.

Although this study benefits from a large and diverse population in terms of demographic
profile and geographic distribution, the findings should be interpreted in light of its limitations.
First, as a retrospective study using data abstracted from chart reviews, important variables, such
as travel histories and presenting symptoms, may be missing or incomplete in the subjects’
medical records. Second, subjects without Lyme disease may have been misclassified as true
positives. Three subjects categorized as true positives received concomitant diagnoses associated
with false positive Lyme disease serology: babesiosis, infectious mononucleosis, and
rheumatoid arthritis. Moreover, cross-sectional serosurveys in highly endemic areas have found
background seropositivity as high as 4%, suggesting that persons with remote Lyme disease
histories may exhibit a prolonged IgM response. Third, by incorporating results from multiple
laboratories, which may use assays that have different test characteristics, this study does not
address the false positive percentage associated with any particular assay. Fourth, this study
assessed a population with access to a healthcare system that does not charge patients for
laboratory testing and prescriptions ordered within the network. The findings may not be
generalizable to uninsured or underinsured populations.

Overtesting for and overdiagnosis of Lyme disease was common in this large U.S. healthcare
system. Clinicians should order serologic testing judiciously in accordance with national
guidelines. Unnecessary testing and incorrect interpretation of positive IgM immunoblots may
squander resources, prompt unwarranted antibiotic use, encourage antimicrobial resistance, and inflate estimates of disease incidence. Reduction of superfluous testing and better assessment of positive IgM immunoblots are the joint responsibility of clinicians, microbiologists, and public health personnel.

**Transparency Declaration**

**Conflict of Interest:** The authors have nothing to disclose.

**Funding:** No outside funding was received.

**Acknowledgements:** The authors wish to thank Ms. Sandy Kawano, technical editor, Aeromedical Research Department, U.S. Air Force School of Aerospace Medicine, for her assistance editing this manuscript. This project was supported in part by an appointment to the Research Participation Program for the U.S. Air Force School of Aerospace Medicine, Public Health and Preventive Medicine Department, administered by the Oak Ridge Institute for Science and Education through an agreement between the U.S. Department of Energy and U.S. Air Force School of Aerospace Medicine, Public Health and Preventive Medicine Department.

**Contribution:** BW contributed to study design, analysis and interpretation of data, statistical analysis, and drafting of the manuscript. RB contributed to study design, analysis of data, statistical analysis, and drafting of the manuscript. LC contributed to study design, analysis and interpretation of data, critical revision of the manuscript, and study supervision. JE contributed to study design, acquisition of data, and critical revision of the manuscript. SP contributed to acquisition of data, critical revision of the manuscript, and statistical analysis. KG contributed to study design, critical revision of the manuscript, and study supervision.
Disclaimer

The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Air Force, the Department of Defense, or the U.S. Government.

References


Figure 1. Lyme Disease Serologic Tests Ordered at U.S. Air Force Military Treatment Facilities from January 1, 2013, to December 31, 2017.

Abbreviations: EIA, enzyme-linked immunoassay; IFA, immunofluorescence assay.
### Table 1. Assessment of Lyme Disease IgM Immunoblots (N=212)

<table>
<thead>
<tr>
<th>False Positive Criterion</th>
<th>Number (%) Meeting Criterion</th>
<th>( \dagger )</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Failure to meet seropositivity criteria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. First-tier test omitted</td>
<td>65 (30.7)</td>
<td></td>
</tr>
<tr>
<td>B. First-tier test negative</td>
<td>27 (12.7)</td>
<td></td>
</tr>
<tr>
<td>C. Symptoms in excess of 30 days with a negative IgG immunoblot</td>
<td>8 (3.8)</td>
<td></td>
</tr>
<tr>
<td>D. Immunoblot did not meet band criteria for reactivity ( \ddagger )</td>
<td>45 (21.2)</td>
<td></td>
</tr>
<tr>
<td>2. Lack of exposure risk</td>
<td>1 (0.5)</td>
<td></td>
</tr>
<tr>
<td>A. Testing performed from December through March</td>
<td>52 (24.5)</td>
<td></td>
</tr>
<tr>
<td>B. Subject resided exclusively in states without documented <em>Ixodes scapularis</em> or <em>I. pacificus</em> ticks and had no documented travel history</td>
<td>41 (19.3)</td>
<td></td>
</tr>
<tr>
<td>3. Asymptomatic or atypical symptoms at time of testing</td>
<td>97 (45.8)</td>
<td></td>
</tr>
<tr>
<td>A. Asymptomatic</td>
<td>7 (3.3)</td>
<td></td>
</tr>
<tr>
<td>B. Symptoms atypical for early Lyme disease ( \ddagger )</td>
<td>90 (42.5)</td>
<td></td>
</tr>
<tr>
<td>4. Negative serology within 30 days of positive test</td>
<td>9 (4.2)</td>
<td></td>
</tr>
</tbody>
</table>

\( \dagger \) Many of the 113/212 (53.3%) assessed as false positives met multiple criteria. By number of criteria met:

1. (33/113 [29.2%]); two (54/113 [47.8%]); three (22/113 [19.5%]); four (4/113 [3.5%]).

\( \ddagger \) No documented or described erythema migrans lesion, acute febrile illness, cranial nerve palsy, carditis, or meningitis.